Características de los conjuntos
¿Qué es un conjunto?
Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y diferenciados.
Es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, este fue inventado por
Georg Cantor hace 100 años. Sus conceptos han penetrado y transformado todas las teorías formales y todas las ramas de la matemática y de la lógica.
Como este es un concepto primario, el conjunto no puede definirse; sólo se puede dar una idea intuitiva de el.
A pesar de su sencillez este concepto es la base de las Matemáticas actuales, ya que, entre otras cosas, sirve para la construcción de los números. Sirve además para estudiar las estructuras algebraicas, con las cuales se organizan ordenadamente todos los conocimientos matemáticos.
Ejemplos: los alumnos de un colegio, los números impares, los meses del año, etc., siendo cada alumno del colegio, cada número impar, cada mes del año, respectivamente, elementos de cada uno de los correspondientes conjuntos.
¿Qué es un elemento?
Elemento es cada uno de los objetos por los cuales esta conformado un conjunto.
Por ejemplo, par los ejemplos tomados anteriormente en el concepto de conjunto. Luis, Antonio, Paula, son los elementos del primer conjunto, por que ellos son alumnos de colegio. 1,3,5 son elementos del segundo conjunto porque son números impares.
Este ejemplo gráfico nos muestra la agrupación llamado Alumnos de Colegio con sus elementos que serían: Luis, Antonio, Paula y Pánfilo
¿Cuáles son las formas de determinar un conjunto?
Un conjunto puede determinarse de dos formas:
· Por extensión: escribiendo dentro de una llave los nombres de los elementos del conjunto.
· Por comprensión: escribiendo dentro de una llave una propiedad característica de los elementos del conjunto y solamente de ellos.
Ejemplo: El conjunto de los meses del año se nombra:
Por extensión: {Enero, febrero, marzo, abril, mayo, junio, julio, agosto, septiembre, octubre, noviembre, diciembre}
Por comprensión: {meses del año}, o bien, de esta otra forma: {x/x es un mes del año}, que se lee: conjunto de elementos x tales que x es un mes del año.
Ejemplo: El conjunto dedos de la mano se nombra
Por extensión: {Pulgar, Indice, Mayor, Anular, meñique}
Por comprensión: {dedos de la mano}, o bien, de esta otra forma: {x/x es dedo de la mano}, que se lee: conjunto de elementos x tales que x es un dedo de la mano
¿Qué es la relación de pertenencia?
Es la relación que existe entre un elemento y un conjunto, así, un elemento pertenece al conjunto, y se representa de esta forma.
Ejemplo, A = {x/x es dedo de la mano}
B= índice, entonces
Cuando un elemento no esta en el conjunto dicho elemento no pertenece al conjunto, y se representa de la siguiente manera
La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.
En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.
La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.
Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:
{ a, b, c, ..., x, y, z}
Como se muestra el conjunto se escribe entre llaves ({}) , o separados por comas (,).
El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.
Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto { a, b, c } también puede escribirse:
{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }
En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:
El conjunto { b, b, b, d, d } simplemente será { b, d }.
MEMBRESIA
Los conjuntos se denotan por letras mayúsculas : A, B, C,... por ejemplo:
A={ a, c, b }
B={ primavera, verano, otoño, invierno }
El símbolo Î indicará que un elemento pertenece o es miembro de un conjunto. Por el contrario para indicar que un elemento no pertenece al conjunto de referencia, bastará cancelarlo con una raya inclinada /quedando el símbolo como Ï .
Ejemplo:
Sea B={ a, e, i, o, u }, a Î B y c Ï B
SUBCONJUNTO
Sean los conjuntos A={ 0, 1, 2, 3, 5, 8 } y B={ 1, 2, 5 }
En este caso decimos que B esta contenido en A, o que B es subconjunto de A. En general si A y B son dos conjuntos cualesquiera, decimos que B es un subconjunto de A si todo elemento de B lo es de A también.
Por lo tanto si B es un subconjunto de A se escribe B Ì A. Si B no es subconjunto de A se indicará con una diagonal Ë .
Note que Î se utiliza solo para elementos de un conjunto y Ì solo para conjuntos.
UNIVERSO O CONJUNTO UNIVERSAL
El conjunto que contiene a todos los elementos a los que se hace referencia recibe el nombre de conjunto Universal, este conjunto depende del problema que se estudia, se denota con la letra U y algunas veces con la letra S (espacio muestral).
Por ejemplo si solo queremos referirnos a los 5 primeros números naturales el conjunto queda:
U={ 1, 2, 3, 4, 5 }
Forma alternativa para indicar conjuntos de gran importancia:
Conjunto de números naturales (enteros mayores que cero) representados por la letra N donde
N={ 1, 2, 3, .... }
Conjunto de números enteros positivos y negativos representados por la letra Z donde
Z={..., -2, -1, 0, 1, 2, ... }
Conjunto de números racionales (números que se representan como el cociente de dos números enteros {fracciones }). Estos números se representan por una Q
Conjunto de números irracionales (números que no puedan representarse como el cociente de dos números enteros) representados por la letra I.
Conjunto de los números reales que son los números racionales e irracionales es decir todos, representados por R.
Todos estos conjuntos tienen un número infinito de elementos, la forma de simbolizarlos por extensión o por enumeración es de gran utilidad cuando los conjuntos a los que se hace referencia tienen pocos elementos para poder trabajar con ellos se emplean la notación llamada comprehensión.
Por ejemplo, la denotar el conjunto de los números naturales menores que 60. Aquí U es el conjunto N y se tiene una propiedad que caracteriza a los elementos del conjunto: ser menores que 60.
Para indicar esta situación empleamos la simbología del álgebra de conjuntos:
{ x/x Î N ; x<60 }
En esta expresión se maneja un conjunto de x que pertenece a los números naturales (N) y además que los valores de x son menores que 60.
Ahora si se desea trabajar con conjuntos que manejen intervalos estos pueden ser representados por medio de una expresión algebraica; supongamos que se desea expresar los números enteros (Z) entre -20 y 30 el conjunto quedaría de la manera siguiente:
{ x/x Î Z ; -20 £ x £ 30 }
También se puede expresar el valor de un conjunto indicando la pertenencia o no pertenencia a uno diferente, por ejemplo
L={ 1, 3, 4, 6, 9 }
P={ x/x Î N ; X Ï L }
En el conjunto P se indica que los elementos x de un conjunto pertenecen a los números naturales y además x no pertenece al conjunto L.
DIAGRAMAS DE VENN
Los diagramas de Venn que de deben al filósofo inglés John Venn (1834-1883) sirven para encontrar relaciones entre conjuntos de manera gráfica mediante dibujos ó diagramas.
Vídeos: https://www.youtube.com/watch?v=BY2BxpOCgd0
https://www.youtube.com/watch?v=NzcyLx0U0jM
No hay comentarios.:
Publicar un comentario