La teoría de conjuntos y sus fundamentos básicos fueron desarrolladospor George Cantor, un matemático alemán, hacia finales del siglo XIX. La teoría de conjuntos trata de entender las propiedades de conjuntos que no están relacionados a los elementos específicos de los cuales están compuestos. Por ende, tanto los teoremas como los axiomas de la teoría de conjuntos involucran a conjuntos generales, sin importar que contengan objetos físicos o números. Existen muchas aplicaciones prácticas de la teoría de conjuntos.
Función
Desde formular las bases lógicas para la geometría, el cálculo y la topología, hasta crear álgebra en torno a campos, anillos y grupos, las aplicaciones de la teoría de conjuntos son comúnmente utilizadas en campos de las ciencias y las matemáticas como biología, química y física, como así también en ingeniería eléctrica y computación.
Matemáticas
Como la teoría es de naturaleza abstracta, tiene funciones y aplicaciones vitales en el campo de las matemáticas. Una rama de la teoría de conjuntos es llamada "análisis". El cálculo integral y diferencial son componentes principales del análisis. La continuidad de una función y los límites de la misma derivan de la teoría de conjuntos. Estas operaciones conducen al álgebra de Boole, que es útil para la producción de computadoras y calculadoras.
REFERENCIA
VÍDEO
https://www.youtube.com/watch?v=6W6zDMXPJW0
No hay comentarios.:
Publicar un comentario