viernes, 5 de diciembre de 2014
4.1-4.2 ÁLGEBRA BOOLEANA. Teoremas y postulados.
UN ÁLGEBRA DE BOOLE ES UN SISTEMA DE ELEMENTOS B={0,1} Y
LOS OPERADORES BINARIOS (·) y (+) y (’) DEFINIDOS DE LA
SIGUIENTE FORMA
A B A+B A·B A A’
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 0
1 1 1 1
OPERADOR + OPERADOR OR
OPERADOR · OPERADOR AND
OPERADOR ‘ OPERADOR NOT
QUE CUMPLEN LAS SIGUIENTES PROPIEDADES:
1.- PROPIEDAD CONMUTATIVA:
A + B = B + A
A · B = B · A
2. PROPIEDAD DISTRIBUTIVA:
A·(B+C) = A·B + A·C
A + B·C = (A+B)·(A+C)
3. ELEMENTOS NEUTROS DIFERENTES
A + 0 = A
A · 1 = A
4. SIEMPRE EXISTE EL COMPLEMENTO DE A, DENOMINADO A’
A + A’ = 1
A · A’ = 0
PRINCIPIO DE DUALIDAD: cualquier teorema o identidad algebraica
deducible de los postulados anteriores puede transformarse en un segundo
teorema o identidad válida sin mas que intercambiar (+) por (·) y 1 por 0.
CONSTANTE: cualquier elemento del conjunto B
VARIABLE: símbolo que representa un elemento arbitrario del álgebra, ya
sea constante o fórmula completa.
TEOREMAS DEL ÁLGEBRA DE BOOLE
TEOREMA 1: el elemento complemento A’ es único.
TEOREMA 2 (ELEMENTOS NULOS): para cada elemento de B se verifica:
A+1 = 1
A·0 = 0
TEOREMA 3: cada elemento identidad es el complemento del otro.
0’=1
1’=0
TEOREMA 4 (IDEMPOTENCIA): para cada elemento de B, se verifica:
A+A=A
A·A=A
TEOREMA 5 (INVOLUCIÓN): para cada elemento de B, se verifica:
(A’)’ = A
TEOREMA 6 (ABSORCIÓN): para cada par de elementos de B, se verifica:
A+A·B=A
A·(A+B)=A
TEOREMA 7: para cada par de elementos de B, se verifica:
A + A’·B = A + B
A · (A’ + B) = A · B
TEOREMA 8 (ASOCIATIVIDAD): cada uno de los operadores binarios (+) y
(·) cumple la propiedad asociativa:
A+(B+C) = (A+B)+C
A·(B·C) = (A·B)·C
LEYES DE DEMORGAN: para cada par de elementos de B, se verifica:
(A+B)’ = A’·B’
(A·B)’ = A’ + B’
http://www.uhu.es/rafael.lopezahumada/descargas/tema3_fund_0405.pdf
Suscribirse a:
Comentarios de la entrada (Atom)
gracias por el datos estaba buscado algo parecido para poder hacer un resumen
ResponderBorrar